ScriptEngine Tasks EC-Earth

Release 0.1

Nov 17, 2022

Getting Started

Installation 3
1.1 Installation usingconda and pip o o v i Lt e e e e e e e e e 3
1.2 Installation from Source L e e e e e e e e e e 4
Using the Taskset 5
General Structure 7
Generic Processing Tasks 9
4.1 Scalar e e e 9
42 TIMESEIIES . & v v v v v o e 9
4.3 LinearCombination i i e e e e e e e 11
Computational Performance Diagnostics 13
5.1 DiskusageRteScalar L 13
5.2 SimulatedyearsRteScalar e e e e 13
5.3 SYPDusing TIMESEries o v i v v it e et e e e e e e e e e e e e e e e 14
NEMO Diagnostics 15
6.1 NemoGlobalMeanYearMeanTimeseries v v v v v vt v i it e 15
6.2 NemoAllMeanMap o o v i e e e e e e e e e e e e e 16
6.3 NemoYearMeanTemporalMap L e 16
6.4 NemoMonthMeanTemporalMap e 17
SI3 Diagnostics 19
7.1 Si3HemisSumMonthMeanTimeseries 0 v i ittt et e e e 19
7.2 Si3HemisPointMonthMeanAllMeanMap e 20
7.3 Si3HemisPointMonthMeanTemporalmap o v i i i v i e e e e 20
OpenlFS Diagnostics 23
8.1 OifsGlobalMeanYearMeanTimeseries v v v v v v v v v et e e e e e e e e e e 23
82 OifsAllMeanMap o v e e e e e e e e e e e e 24
8.3 OifsYearMeanTemporalmap o e e 24
Presentation Tasks 25
0.1 Markdown e e e 25
0.2 Redmine e 26

10 Developer’s Guide 27

10.1
10.2
10.3
10.4
10.5

General Notes for Contributing

..................................... 27
Code STrUCTUIE v v o o s e e e e e e e e 27
Logging Policy e 28
Naming Processing Tasks L e 28
Naming Presentation Tasks L 29

ScriptEngine Tasks EC-Earth, Release 0.1

This package contains ScriptEngine tasks for the EC-Earth 4 climate model, specifically the EC-Earth 4 monitoring
tool.

Getting Started 1

ScriptEngine Tasks EC-Earth, Release 0.1

2 Getting Started

CHAPTER 1

Installation

The ScriptEngine tasks for EC-Earth require a Unix(-like) operating system and Python 3.6+.
The package supports two different installation methods:

* Installation using conda and PyPl/pip;

* Installation from source.
The next sections will detail the procedure to install the package for both methods.

You can check if everything worked out by calling se ——help from the command line. ScriptEngine will show all
registered tasks, and the tasks in this package start with the prefix ece..

1.1 Installation using conda and pip

This is the recommended way to install this package.

Get the conda package manager following the instructions for your operating system. Create an environment and
activate it with

conda create —--name your_environment_name python=3.6 # or 3.7 or 3.8
conda activate your_environment_name

Alternatively, activate the existing conda environment you want to use for this package.

Update your conda environment using the file conda_environment . yml in the GitHub repository:

conda env update -n your_environment_name --file conda_environment.yml

This YAML file contains necessary dependencies for packages that should be installed via conda (like, e.g., Iris). You
can also install these packages from source, but this will require a lot more attention during the setup process. Refer
to the documentation of the packages in conda_environment . yml for more information on installing them.

The ScriptEngine tasks for EC-Earth can then be installed using

https://docs.conda.io/projects/conda/en/latest/user-guide/install/

ScriptEngine Tasks EC-Earth, Release 0.1

’pip install scriptengine-tasks-ecearth

The remaining dependencies will be installed automatically.

1.2 Installation from Source

You can download or clone the source code from https://github.com/uwefladrich/scriptengine-tasks-ecearth.

Update your conda environment using the file conda_environment . yml in the GitHub repository:

conda env update -n your_environment_name --file conda_environment.yml

This YAML file contains necessary dependencies for packages that should be installed via conda (like, e.g., Iris). You
can also install these packages from source, but this will require a lot more attention during the setup process. Refer
to the documentation of the packages in conda_environment . yml for more information on installing them.

The package can be installed from inside the scriptengine-tasks-ecearth directory (assuming you did not choose a
different name) using

’pip install -e .

If you want to run the tests, you will need to download the test data, put the files into tests/testdata, and install
Pytest. You can run them from inside the scriptengine-tasks-ecearth directory using

’pytest .

To build the documentation manually, you will need Sphinx. The HTML theme is the Read the Docs Sphinx Theme.

4 Chapter 1. Installation

https://github.com/uwefladrich/scriptengine-tasks-ecearth
https://github.com/valentinaschueller/ece-4-monitoring-test-data
https://docs.pytest.org/en/latest
https://www.sphinx-doc.org/
https://sphinx-rtd-theme.readthedocs.io/en/stable/index.html

CHAPTER 2

Using the Taskset

To run a YAML script using the ScriptEngine tasks for EC-Earth, use the following command:

se example_script.yml

where example_script.yml contains tasks from this package.
See se ——help for additional commands such as setting the logging level etc.

For more information on how to use ScriptEngine in general, please consult the ScriptEngine documentation.

https://github.com/uwefladrich/scriptengine

ScriptEngine Tasks EC-Earth, Release 0.1

6 Chapter 2. Using the Taskset

CHAPTER 3

General Structure

The monitoring tool has a defined workflow: At the end of each leg, using EC-Earth output, it creates relevant di-
agnostics. These diagnostics are then visualized in an expressive manner. Both the selection of diagnostics as well
as the desired visualization might vary between experiments and are thus configurable. The software consists of two
different task types:

Processing tasks process input from the model output and the runtime environment. With this, they create diagnostics
and save them in a file, the diagnostic on disk. The tool so far supports four types of diagnostics:

e scalar: zero-dimensional in time & space.

* time series: zero-dimensional in space, one-dimensional in time.

* map: two-dimensional in space, zero-dimensional in time.
 temporal map: two-dimensional in space, zero-dimensional in time.

Processing tasks and the resulting diagnostics on disk should be named according to the naming scheme described
here: Naming Processing Tasks.

Presentation tasks read these saved diagnostics and visualize them. Then, they present all diagnostics at a presentation
outlet.

ScriptEngine Tasks EC-Earth, Release 0.1

8 Chapter 3. General Structure

CHAPTER 4

Generic Processing Tasks

The processing tasks in this chapter are not tied to a specific EC-Earth component.

4.1 Scalar

Diagnostic Type: Scalar

Mapped to: ece .mon.scalar

This is the base class for all implemented scalar tasks. The Scalar processing task writes custom output to a YAML
file.

Required arguments

e title: Title of the diagnostic

* value: Value of the scalar

e dst: Destination, must end in .ym! or .yaml
Optional arguments

e comment: Additional description of diagnostic. Default: None.

- ece.mon.scalar:
title: "Experiment ID"
value: "{{exp_id}}"
dst: "{{mondir}}/expid_scalar.yml"

4.2 Timeseries

Diagnostic Type: Timeseries
Mapped to: ece.mon.timeseries

ScriptEngine Tasks EC-Earth, Release 0.1

This processing task creates a time series diagnostic, illustrating the progression of a scalar quantity over the duration
of the current experiment. It can be used for custom output, an exemplary use case is the SYPD time series, a
computational performance diagnostic: SYPD using Timeseries.

Required arguments
e title: Title of the diagnostic
* data_value: Value of the new data point

e coord_value: New value of the time coordinate (can be int/float/double or date/datetime). Must be mono-
tonically increasing.

¢ dst: Destination, must end in .nc
Optional arguments
* comment: Additional description of diagnostic. Default: .
¢ data_name: Name of the data variable. Default: value of title
* data_unit: Unit of the data variable. Can be one of the UDUNITS strings. Default: 1

¢ coord_name: Name of the coordinate. Default: time

e coord_unit: Unit of the coordinate. Can be one of the UDUNITS strings. Default: 1

Note: To check if a unit string is compatible with UDUNITS, use the following small Python check:

import cf_ units
cf_units.as_unit ("kg") # insert your test string here

This will throw a ValueError in case the unit is not compatible with UDUNITS.

4.2.1 Minimal Example

- ece.mon.timeseries:
title: "Some Diagnostic"
data _value: "{{some_value}}"
coord_value: "{{leg_num}}"
dst: "{{mondir}}/diagnostic_timeseries.nc"

4.2.2 Elaborate Example

- ece.mon.timeseries:
title: "An Interesting Title"

data_value: "{{some_value}}"
coord _value: "{{some_other value}}"
dst: "{{mondir}}/diagnostic_timeseries.nc"

comment: "Diagnostic Description."
coord _name: "x-axis label"

coord units: "s"

data_name: "y-axis label"
data_units: "m"

10 Chapter 4. Generic Processing Tasks

https://www.unidata.ucar.edu/software/udunits/
https://www.unidata.ucar.edu/software/udunits/
https://www.unidata.ucar.edu/software/udunits/

ScriptEngine Tasks EC-Earth, Release 0.1

4.3 LinearCombination

Diagnostic Type: None (generates a general NetCDF files for further processing tasks)
Mapped to: ece.mon.linear_combination

This processing task computes a linear combination » |, «;v; of scalar factors «; and compatible NetCDF variables v;,
and writes the result into a new NetCDF file. This can be used to create custom diagnostics, for example the difference
or (weighted) sum of variables. The resulting NetCDF files and variables can be used in subsequent processing tasks.
Note that the LinearCombination task does not perform any spatial or temporal averaging.

Example use cases for LinearCombination include the computation of precipitation minus evaporation (mass
balance P — FE) and energy balances by summing up individual radiation contributions.

The input variables for the LinearCombination task must be compatible in terms of dimensions and units, ac-
cording to the rules of Iris cube maths. If Iris cannot compute the linear combination, the execution of the task is
aborted with an error explaining the type of incompatibility.

Required arguments

e src: A list of dictionaries, each containing the path, varname, for each variable, and an optional scalar
factor «;. The default factor is 1.0.

* dst: A dictionary describing the NetCDF file used to store the custom diagnostic. Must at least contain the
path and varname for the result.

Optional ‘‘dst‘‘ arguments

* longname: The long name of the target variable. If not provided, the resulting diagnostic will not have a
longname.

* standardname: A valid standard name for the target variable as defined by the CF conventions. If not
provided, the resulting diagnostic will not have a standardname.

e unit: Custom target unit for the destination file. Can be one of the UDUNITS strings (see the above note on
checking valid units). If not provided, Iris will try to determine the unit of the linear combination.

4.3.1 Examples

The first example adds short and long wave radiation contributions to provide an energy budget at the top of atmosphere
(TOA):

— ece.mon.linear combination:
src:
— varname: rsnt
path: oifs_output_file.nc
— varname: rlnt
path: oifs_output_file.nc
dst:
varname: net_toa
longname: Net TOA
path: net_toa.nc

The second example computes the difference between precipitation P and evaporation E to provide the mass balance
P — F as custom diagnostic in pme . nc. Note that the standardname and unit are explicitely set for the output NetCDF
file:

4.3. LinearCombination 11

https://scitools-iris.readthedocs.io/en/stable/userguide/cube_maths.html
https://www.unidata.ucar.edu/software/udunits/

ScriptEngine Tasks EC-Earth, Release 0.1

— ece.mon.linear combination:
src:
- varname: pr
path: oifs_output_file.nc
— varname: evspsbl
path: oifs_output_file.nc
factor: -1.0

dst:
varname: pme
longname: "Precipitation - Evaporation"

standardname: precipitation_amount
unit: "kg m-2"
path: pme.nc

12

Chapter 4. Generic Processing Tasks

CHAPTER B

Computational Performance Diagnostics

The processing tasks in this chapter create diagnostics informing about computational performance and the general

experiment progress.

5.1 DiskusageRteScalar

Diagnostic Type: Scalar
Mapped to: ece.mon.diskusage_rte_scalar

Computes the size of a user-specified directory.
Required arguments
* src: Path to the specified directory.

e dst: Destination, must end in .ym! or .yaml

- ece.mon.diskusage_rte_scalar:
src: "{{rundir}}/output"
dst: "{{mondir}}/diskusage_rte_scalar.yml"

5.2 SimulatedyearsRteScalar

Diagnostic Type: Scalar
Mapped to: ece.mon.simulatedyears_rte_scalar

Computes the difference in years between end and start.

Required arguments

13

ScriptEngine Tasks EC-Earth, Release 0.1

e start: Start date of the simulation.
* end: End date of the current leg.

e dst: Destination, must end in .ym! or .yaml

- ece.mon.simulatedyears_rte_scalar:

start: "{{start}}"
end: "{{leg.end}}"
dst:

"{{mondir}}/simulatedyears_rte_scalar.yml"

5.3 SYPD using Timeseries

— ece.mon.timeseries:
title: "Simulated Years per Day"
coord_value: "{{leg_num}}"
coord_name: "Leg Number"
comment :
data_value:

dst: "{{mondir}}/sypd_timeseries.nc"

"SYPD development during this simulation.”
"{{ ((schedule.leg.end - schedule.leg.start)/script_elapsed_time/365) }}

14

Chapter 5. Computational Performance Diagnostics

CHAPTER O

NEMO Diagnostics

The processing tasks in this chapter create diagnostics for the NEMO ocean model.
Assumptions about input data
* input data are output files from NEMO, i.e. NetCDF files on a global curvilinear grid.
* currently, only 2D variables can be treated.
* it is assumed that data for land cells is flagged as invalid.

* A leg length of one year is expected. Longer/shorter lengths won’t lead to failure but file descriptions might be
inaccurate (e.g. the comment attribute might say “annual mean” despite being a half-year mean).

6.1 NemoGlobalMeanYearMeanTimeseries

Diagnostic Type: Time Series

Mapped to: ece .mon.nemo_global_mean_year_mean_timeseries

This processing task computes the global and temporal average of a 2D oceanic quantity, resulting in a time series
diagnostic.

To compute an annual mean, the leg has to be one year long. If it is, e.g., six months long, the task will compute the
six month global mean of the input variable.

Required arguments

e src: A list of strings containing paths to the desired NEMO output files. This list can be manually entered or
(often better) created by the £ind task.

e dst: A string ending in . nc. This is where the diagnostic will be saved.
* domain: A string containing the path to the domain.nc file. Used to compute the global mean.

e varname: The name of the oceanic variable as it is saved in the NEMO output file.

15

ScriptEngine Tasks EC-Earth, Release 0.1

Optional arguments

* grid: The grid type of the desired variable. Can be T, U, V, W. Default: T.

- ece.mon.nemo_global_mean_year_mean_timeseries:
src: "{{t_files}}"
dst: "{{mondir}}/tos_nemo_global_mean_year_mean_timeseries.nc"
domain: "{{rundir}}/domain.nc"
varname: tos

6.2 NemoAllIMeanMap

Diagnostic Type: Map
Map Type: global ocean

Mapped to: ece .mon.nemo_all_mean_map

This task takes the “simulation average climatology” (i.e., a multi-year mean) of a global 2D ocean variable and saves
it as a map diagnostic on disk.

Required arguments

* src: A list of strings containing paths to the desired NEMO output files. This list can be manually entered or
(often better) created by the £ind task.

* dst: A string ending in . nc. This is where the diagnostic will be saved.

* varname: The name of the oceanic variable as it is saved in the NEMO output file.

— ece.mon.nemo_all mean_map:
src: "{{t_files}}"
dst: "{{mondir}}/tos_nemo_all_mean_map.nc"
varname: "tos"

6.3 NemoYearMeanTemporalMap

Diagnostic Type: Temporal Map
Map Type: global ocean
Mapped to: ece.mon.nemo_year_mean_temporalmap

This task takes the leg mean of a global 2D ocean variable and saves it as a temporal map diagnostic on disk. It
assumes the leg is one year long, which is why it is called “YearMeanTemporalMap”.

Required arguments

e src: A list of strings containing paths to the desired NEMO output files. This list can be manually entered or
(often better) created by the £ind task.

* dst: A string ending in . nc. This is where the diagnostic will be saved.

* varname: The name of the oceanic variable as it is saved in the NEMO output file.

16 Chapter 6. NEMO Diagnostics

ScriptEngine Tasks EC-Earth, Release 0.1

— ece.mon.nemo yearfmeanftemporalmap o

src: "{{t_files}}"
dst: "{{mondir}}/tos_nemo_year_mean_temporalmap.nc"
varname: "tos"

6.4 NemoMonthMeanTemporalMap

Diagnostic Type: Temporal Map
Map Type: global ocean
Mapped to: ece.mon.nemo_month_mean_temporalmap

Saves consecutive monthly mean maps of a global 2D ocean variable as a temporal map. This task will fail if the
output frequency is not monthly (e.g. daily or annual output).

Required arguments

e src: A list of strings containing paths to the desired NEMO output files. This list can be manually entered or
(often better) created by the £ind task.

e dst: A string ending in . nc. This is where the diagnostic will be saved.

* varname: The name of the oceanic variable as it is saved in the NEMO output file.

- ece.mon.nemo_month_mean_temporalmap:

src: "{{t_files}}"
dst: "{{mondir}}/tos_nemo_month_mean_temporalmap.nc"
varname: "tos"

6.4. NemoMonthMeanTemporalMap 17

ScriptEngine Tasks EC-Earth, Release 0.1

18 Chapter 6. NEMO Diagnostics

CHAPTER /

SI3 Diagnostics

The processing tasks in this chapter create diagnostics for the SI3 sea ice model.
Assumptions about input data:
* input data are output files from SI3, i.e. NetCDF files on a global curvilinear grid.
* data for land cells is flagged as invalid.

* monthly output files. Otherwise the tasks will fail to compute the diagnostics.

7.1 SiSBHemisSumMonthMeanTimeseries

Diagnostic Type: Time Series

Mapped to: ece.mon.si3_hemis_sum_month_mean_ timeseries

Computes the hemispheric sum of a sea ice variable’s month mean, resulting in a time series diagnostic. This can
be used to create a seasonal cycle time series (March-September or similar) or the time series of another selection of
months.

Required arguments
e src: A list of strings or a single string containing paths to the desired SI3 output file(s).

* domain: A string containing the path to the domain.nc file. The variables elt and e2t are used for
computing the area weights.

e varname: The name of the ice variable as saved in the output file. Can be sivolu or siconc.
* hemisphere: The name of the requested hemisphere. Can be north or south.

e dst: A string ending in . nc. This is where the diagnostic will be saved.

19

ScriptEngine Tasks EC-Earth, Release 0.1

- ece.mon.si3 hemis sum month mean timeseries:

src:
- "{{feb_file[0]}}"
- "{{sep_file[0]}}"
domain: "{{rundir}}/domain_cfg.nc"
dst: "{{mondir}}/siarea_si3_south_sum_feb+sep_mean_timeseries.nc"

hemisphere: south
varname: siconc

7.2 Si3HemisPointMonthMeanAliMeanMap

Diagnostic Type: Map
Mapped to: ece.mon.si3_hemis_point_month_mean_all_mean_map
Map Type: polar ice sheet

Computes the simulation average climatology of a sea ice variable’s month mean on one hemisphere, resulting in a
map diagnostic. E.g. the simulation mean of all March means of the arctic sea ice concentration.

Required arguments
e src: A string containing paths to the desired SI3 output file.
* varname: The name of the ice variable as saved in the output file. Can be sivolu or siconc.
* hemisphere: The name of the requested hemisphere. Can be north or south.

e dst: A string ending in . nc. This is where the diagnostic will be saved.

- ece.mon.si3_hemis_point_month mean_all mean map:
src: "{{ice_file_sep}}"
dst: "{{mondir}}/sivolu_si3_north_point_sep_mean_all_mean_map.nc"
hemisphere: south
varname: sivolu

7.3 Si3HemisPointMonthMeanTemporalmap

Diagnostic Type: Temporal Map
Mapped to: ece.mon.si3_hemis_point_month_mean_temporalmap

Map Type: polar ice sheet

Creates a temporal map of a sea ice variable’s month mean, resulting in a temporal map diagnostic. E.g. the March
means of the arctic sea ice concentration over time.

Required arguments
* src: A string containing paths to the desired SI3 output file.
* varname: The name of the ice variable as saved in the output file. Can be sivolu or siconc.
* hemisphere: The name of the requested hemisphere. Can be north or south.

e dst: A string ending in . nc. This is where the diagnostic will be saved.

20 Chapter 7. SI3 Diagnostics

ScriptEngine Tasks EC-Earth, Release 0.1

- ece.mon.si3_hemis_point_month_mean_ temporalmap:
src: "{{ice_file_mar}}"
dst: "{{mondir}}/siconc_si3_north_point_mar_mean_temporalmap.nc"
hemisphere: north
varname: siconc

7.3. Si3HemisPointMonthMeanTemporalmap

21

ScriptEngine Tasks EC-Earth, Release 0.1

22 Chapter 7. SI3 Diagnostics

CHAPTER 8

OpenlFS Diagnostics

These processing tasks assume that the provided input file is a NetCDF output file from OpenIFS with monthly data.
Further assumptions:

* regularly-spaced in time
* data in grid-point space on a reduced Gaussian grid

» 2D variables only

8.1 OifsGlobalMeanYearMeanTimeseries

Diagnostic Type: Time Series
Mapped to: ece.mon.oifs_global _mean_year_mean_timeseries

This processing task computes the global and temporal average of a 2D atmospheric quantity, resulting in a time series
diagnostic.

To compute an annual mean, the leg has to be one year long. If it is, e.g., six months long, the task will compute the
six month global mean of the input variable.

Required arguments
e src: A string containing the path to the OpenlFS output file.

* varname: The name of the variable in the output file. Refer to the ECMWF parameter database for the meaning
of the variables.

e dst: A string ending in . nc. This is where the diagnostic will be saved.

— ece.mon.oifs_global mean_year_mean_timeseries:
src: "{{rundir}}/output/oifs/{{exp_id}}_atm_Im_1990-1990.nc"
varname: 2t
dst: "{{mondir}}/2t_oifs_global_mean_year_mean_timeseries.nc"

23

https://apps.ecmwf.int/codes/grib/param-db?&filter=grib1&table=128

ScriptEngine Tasks EC-Earth, Release 0.1

8.2 OifsAllMeanMap

Diagnostic Type: Map
Map Type: global atmosphere

Mapped to: ece.mon.oifs_all_mean_map

This task takes the “simulation average climatology” (i.e., a multi-year mean) of a global 2D atmospheric variable and
saves it as a map diagnostic on disk.

Required arguments
e src: A string containing the path to the OpenlFS output file.

* varname: The name of the variable in the output file. Refer to the ECMWF parameter database for the meaning
of the variables.

e dst: A string ending in . nc. This is where the diagnostic will be saved.

— ece.mon.oifs_all mean map:
src: "{{rundir}}/output/oifs/{{exp_id}}_atm_Im_1990-1990.nc"
varname: 2t
dst: "{{mondir}}/2t_oifs_all_mean_map.nc"

8.3 OifsYearMeanTemporalmap

Diagnostic Type: Temporal Map
Map Type: global atmosphere
Mapped to: ece.mon.oifs_year_mean_temporalmap

This task takes the leg mean of a global 2D ocean variable and saves it as a temporal map diagnostic on disk. It
assumes the leg is one year long, which is why it is called ““YearMeanTemporalMap”.

Required arguments
* src: A string containing the path to the OpenIFS output file.

e varname: The name of the variable in the output file. Refer to the ECMWF parameter database for the meaning
of the variables.

e dst: A string ending in . nc. This is where the diagnostic will be saved.

- ece.mon.oifs_year mean_ temporalmap:
src: "{{rundir}}/output/oifs/{{exp_id}}_atm 1m_1990-1990.nc"
varname: 2t
dst: "{{mondir}}/2t_oifs_year_mean_temporalmap.nc"

24 Chapter 8. OpenlFS Diagnostics

https://apps.ecmwf.int/codes/grib/param-db?&filter=grib1&table=128
https://apps.ecmwf.int/codes/grib/param-db?&filter=grib1&table=128

CHAPTER 9

Presentation Tasks

9.1 Markdown

Mapped to ece .mon.presentation.markdown.
This presentation task creates a Markdown file which contains visualizations of the created diagnostics on disk.
Required arguments

e src: A list of strings containing paths to the diagnostics on disk that should be presented.

e dst: A string containing the path to the directory where the report should be put. The directory will contain the
image files for the presentation, as well as a file summary . md with the final presentation.

* template: A string containing the path to the Markdown template file. An exemplary file is contained in the
docs/template folder in the repository.

— ece.mon.presentation.markdown:

src:
- "{{mondir}}/description.yml"
- "{{mondir}}/exp—-id.yml"
- "{{mondir}}/output-disk-usage.yml"
- "{{mondir}}/tos—-global-avg.nc"
- "{{mondir}}/sos-global-avg.nc"

dst: "{{mondir}}/report"

template: "scriptengine-tasks—ecearth/docs/templates/markdown_template.md.j2"

9.1.1 Custom Visualization Options
For custom visualization, a dictionary instead of the path alone can be passed as a source. The path then must lie at
the key path. Currently, the following customization features are implemented:

* value_range: set the minimum and maximum value of a time series or (temporal) map. Particularly useful
for temporal maps. Default: [None, None]

25

https://github.com/uwefladrich/scriptengine-tasks-ecearth/tree/master/docs/templates

ScriptEngine Tasks EC-Earth, Release 0.1

e colormap: set a custom colormap for maps and temporal maps. Default: RdBu_r. The list of possible

colormaps is in the Matplotlib documentation.

Example:

- ece.mon.presentation.markdown

src:
- "{{mondir}}/description.yml"
- "{{mondir}}/exp-id.yml"
- "{{mondir}}/output-disk-usage.yml"
- path: "{{mondir}}/tos_nemo_global_mean_year_mean_timeseries.nc"
value_range: [13, 17]
- path: "{{mondir}}/tos_nemo_year_mean_temporalmap.nc"
value_range: [-2, 30]
colormap: 'viridis'
dst: "{{mondir}}/report"
template: "scriptengine-tasks-ecearth/docs/templates/markdown_template.md.j2"

9.2 Redmine

Mapped to ece.mon.presentation.redmine.

This presentation task creates a Redmine issue on the EC-Earth development portal, containing visualizations of the
created diagnostics on disk.

Required arguments

* src: A list of strings containing paths to the diagnostics on disk that should be presented. You can use the

Custom Visualization Options in the same way as with the Markdown task.

local_dst: A string containing the path to the directory where the attachments can be stored locally. The
directory will contain the image files for the presentation, as well as a file i ssue_description.txt with
the issue description text.

template: A string containing the path to the issue description template file. An exemplary file is contained
in the docs/template folder in the repository.

api_key: Your API key for logging in to the EC-Earth development portal. You can find it (you might have to
generate it first) in your account settings.

subject: The name of your issue. A recommended format for this is shown below.

- ece.mon.presentation.redmine:

src:
- "{{mondir}}/description.yml"
- "{{mondir}}/exp—id.yml"
- "{{mondir}}/sim-years.yml"
- "{{mondir}}/tos-global-avg.nc"
- "{{mondir}}/sos—-global-avg.nc"
- "{{mondir}}/sithic-north-mar.nc"
- "{{mondir}}/sithic-north-sep.nc"
local_dst: "{{mondir}}/redmine-report"
api_key: # Your API key for the EC-Earth Dev Portal
subject: "{{exp_id}}: Short Description"
template: "scriptengine-tasks-ecearth/docs/templates/redmine_template.txt.j2"

26

Chapter 9. Presentation Tasks

https://matplotlib.org/3.1.0/tutorials/colors/colormaps.html
https://github.com/uwefladrich/scriptengine-tasks-ecearth/tree/master/docs/templates
https://dev.ec-earth.org/my/account

cHAaPTER 10

Developer’s Guide

This part summarizes guidelines for extending the monitoring tool.

10.1 General Notes for Contributing

Use black and isort to format the code you add.

10.2 Code Structure

All monitoring tasks are contained in the folder monitoring. helpers contains modules with functions and classes that
are needed in multiple unrelated, processing and presentation tasks.

All monitoring tasks inherit from the generic ScriptEngine Task. Processing tasks have an inheritance substructure
defined by their diagnostic type. New processing tasks should adhere to these structure: Either inherit from the corre-
sponding Diagnostictype class (Scalar, Timeseries, Map, Temporalmap) or create a new one if it is a new diagnostic
type. The Diagnostictype class provides a save () method that can be reused by all inherited tasks. This structure is
illustrated below:

27

https://black.readthedocs.io/en/stable/
https://pycqa.github.io/isort/
https://github.com/uwefladrich/scriptengine-tasks-ecearth/tree/master/monitoring
https://github.com/uwefladrich/scriptengine-tasks-ecearth/tree/master/helpers
https://github.com/uwefladrich/scriptengine/blob/master/scriptengine/tasks/core/task.py

ScriptEngine Tasks EC-Earth, Release 0.1

Processing Tasks

Task

run()

Presentation Tasks

Scalar Timeseries
run() run()
save() save()
DiskUsageRteScalar

run()

Map

Temporalmap

run()
save()

run()
save()

Markdown

run()

To make a task accessible to users, add it as an entry point to setup.py.

10.3 Logging Policy

Every (monitoring) task is responsible for logging its execution. In the beginning of self.run () (after very few
lines of code), a task must call self.log_info () to log that it is active. It may include information about its
arguments in the log message, but nothing that would require a lot of code processing the arguments (which could
fail). A task should write only one 1og_info message during execution. General “progression” statements must be
log_debug messages. If a monitoring task experiences an unrecoverable error: It must use 1og_error and throw
one of the ScriptEngine Task Exceptions. For problems which do not lead to a ScriptEngineTaskException,

use 1og_warning instead.

10.4 Naming Processing Tasks

A processing task has a name that appears in multiple places:

e the Python class

¢ the Python module

* the YAML representation

* the diagnostics on disk created by it

These all adhere to the same

naming

scheme:

variable_component_[domain_op_. ..
]_diagnostictype. The Python class uses the name in CamelCase naming convention. YAML representation,
module, and diagnostic on disk use the snake_case naming convention (see the usage example).

28

Chapter 10. Developer’s Guide

https://github.com/uwefladrich/scriptengine-tasks-ecearth/tree/master/setup.py
https://github.com/uwefladrich/scriptengine/blob/master/scriptengine/exceptions.py

ScriptEngine Tasks EC-Earth, Release 0.1

Component Spatial Domain | Spatial Opera- | Temporal Do- | Temporal Op- | Diagnostic
tion main eration Type
oifs global mean season: djf, | mean scalar
mam,...
nemo hemis: north, | sum month: jan, | min timeseries
south feb,. ..
si3 region: region | min year max map
names
lpjg max all temporalmap
fesom point?
Xios
oasis
si3
rte

Italic keywords can be used as placeholders for the keywords they describe. If a user can select the operation of the
domain, use op as a placeholder.

The domain_op combination can be used consecutively, e.g.: global_sum_month_max_year_mean. The
variable keyword is less standardized, e.g. amocstrength, sypd, tos, 2t, 167,... Depending on the diagnostic/processing
task, parts of the naming scheme are unnecessary. diagnostictype may not be omitted.

10.4.1 Usage Example: Naming Scheme

* Python class: NemoGlobalMeanYearMeanTimeseries

e Python module: nemo_global_mean_year_mean_timeseries

* YAML representation: ece .nemo_global_mean_year_mean_timeseries

* the diagnostics on disk created by it: ece .mon.tos_nemo_global _mean_year_mean_timeseries.

nc

10.5 Naming Presentation Tasks

Naming presentation tasks is not as standardized as for processing tasks. The task/class/module name should be the
presentation outlet, e.g. Markdown. Their YAML representation is preceded by ece.mon.presentation to make them

distinguishable from processing tasks.

10.5. Naming Presentation Tasks

29

http://cfconventions.org/Data/cf-standard-names/docs/standardized-region-names.html
http://cfconventions.org/Data/cf-standard-names/docs/standardized-region-names.html

	Installation
	Installation using conda and pip
	Installation from Source

	Using the Taskset
	General Structure
	Generic Processing Tasks
	Scalar
	Timeseries
	LinearCombination

	Computational Performance Diagnostics
	DiskusageRteScalar
	SimulatedyearsRteScalar
	SYPD using Timeseries

	NEMO Diagnostics
	NemoGlobalMeanYearMeanTimeseries
	NemoAllMeanMap
	NemoYearMeanTemporalMap
	NemoMonthMeanTemporalMap

	SI3 Diagnostics
	Si3HemisSumMonthMeanTimeseries
	Si3HemisPointMonthMeanAllMeanMap
	Si3HemisPointMonthMeanTemporalmap

	OpenIFS Diagnostics
	OifsGlobalMeanYearMeanTimeseries
	OifsAllMeanMap
	OifsYearMeanTemporalmap

	Presentation Tasks
	Markdown
	Redmine

	Developer’s Guide
	General Notes for Contributing
	Code Structure
	Logging Policy
	Naming Processing Tasks
	Naming Presentation Tasks

